선택 공리

위키백과, 우리 모두의 백과사전.
(선택공리에서 넘어옴)
이동: 둘러보기, 검색
선택 공리의 형상화. 선택 함수는 각 집합 를 그 속의 원소 로 대응시킨다.

집합론에서, 선택 공리(選擇公理, 영어: axiom of choice, 약자 AC)는 공집합이 아닌 집합에서 한 원소를 고를 수 있으며, 또한 이를 무한 번 반복할 수 있다는 공리이다. 직관적으로 자연스러워 보이지만, 비직관적인 결과를 함의한다.

정의[편집]

집합족 위의 선택 함수(選擇函數, 영어: choice function)는 다음 성질을 만족시키는 함수이다.

만약 라면, 는 물론 선택 함수를 가질 수 없다. 선택 공리에 의하면, 공집합을 포함하지 않는 모든 집합족 는 선택 함수를 갖는다.

성질[편집]

만약 체르멜로-프렝켈 집합론(ZF)이 일관적이라면, 선택 공리는 체르멜로-프렝켈 집합론과 독립적이다. 즉, 다음을 보일 수 있다.

선택 공리를 함의하는 명제[편집]

체르멜로-프렝켈 집합론 아래, 다음 명제들은 선택 공리를 함의한다.

선택 공리와 동치인 명제[편집]

체르멜로-프렝켈 집합론(ZF)을 가정하면, 선택 공리는 수많은 동치 명제들을 가지며, 다음과 같다. 즉,

인 명제 의 예는 다음을 들 수 있다.

  • 공집합을 포함하지 않는 집합족 에 대하여, 이다.
  • 초른의 보조정리
  • 정렬 정리
  • 티호노프 정리
  • (타르스키 정리 영어: Tarski theorem) 임의의 무한 기수 에 대하여, 이다.[1]
  • (기수의 비교 가능성) 임의의 두 기수 , 에 대하여, 이거나, 이거나, 이다.
  • 모든 벡터 공간기저를 갖는다.
  • 자명환이 아닌 (단위원을 갖는) 극대 아이디얼을 갖는다.
  • 망각 함자 공집합이 아닌 모든 집합의 모임이다.
  • (무한군에 대한) 라그랑주 정리 (군론)
  • 모든 연결 그래프생성나무를 갖는다.

선택 공리로부터 함의되는 명제[편집]

만약 체르멜로-프렝켈 집합론이 일관적이라면 체르멜로-프렝켈 집합론으로 다음 정리들을 증명할 수 없지만, 선택 공리를 추가하면 증명할 수 있다.

역사[편집]

게오르크 칸토어는 선택 공리와 동치인 정렬 정리가 증명이 필요 없을 정도로 자명한 "사고 법칙"(독일어: Denkgesetz 뎅크게제츠[*])이라고 여겼다. 그러나 다른 수학자들은 이 "사고 법칙"에 대하여 회의적이었다. 1904년에 헝가리의 수학자 쾨니그 줄러(헝가리어: Kőnig Gyula)는 정렬 정리를 반증하였다고 발표하였다. 그러나 몇 주 뒤 펠릭스 하우스도르프가 이 "반증"의 오류를 지적하였다.

1904년에 에른스트 체르멜로정렬 정리를 보다 더 자명한 원리로부터 유도하기 위하여 선택 공리를 도입하였고, 이를 통해 정렬 정리를 증명하였다.[2]

쿠르트 괴델내부 모형 이론을 사용하여, 선택 공리가 체르멜로-프렝켈 집합론과 일관적임을 보였다.[3] 구체적으로, 구성 가능 전체 체르멜로-프렝켈 집합론모형이며, 이 모형에서는 선택 공리가 성립한다. 폴 코언강제법을 사용하여 선택 공리의 부정이 체르멜로-프렝켈 집합론과 일관적임을 보였다.

현재까지도, 많은 수학자들은 선택 공리에 대하여 회의적인 입장을 보인다. 미국의 수학자 제리 로이드 보나(영어: Jerry Lloyd Bona)는 이에 대하여 다음과 같이 농담하였다.

선택 공리는 당연히 참이고, 정렬 정리는 당연히 거짓이고, 초른의 보조정리는 글쎄……?

The Axiom of Choice is obviously true, the well-ordering principle obviously false, and who can tell about Zorn's lemma?

이는 선택 공리 자체는 직관적으로 보이지만, 이와 동치인 여러 명제(정렬 정리 등)는 매우 비직관적임을 시사한다.

사용례[편집]

공식적인 형식화가 없었음에도 불구하고 19세기 말까지 선택공리는 암묵적으로 수학자들 사이에서 사용되어 왔다. 예를 들어, 집합 가 공집합이 아닌 집합만을 포함한다고 했을 때, 수학자들은 종종 “모든 에 포함된 (집합) 에 대해, 의 원소라고 하자” 라고 기술하곤 했다. 일반적으로 (함수) 가 선택공리 없이 존재할 수 있음을 증명하기란 불가능했고, 그로 인해 Zermelo 이전 까지는 이를 심각한 문제로 여기지 않았다.

한편, 모든 함수가 선택공리를 필요로 하지는 않는다. 유한 집합 의 경우, 선택공리는 다른 집합론의 공리들로부터 도출될 수 있다. 각각에 적어도 하나의 물건이 담긴 (유한한) 여러 개의 상자들을 상상 해 보자. 이 때 우리는 각 상자에서 정확히 하나의 물건을 선택할 수 있다. 예를 들자면 이런 식이다. 첫 번째 상자에서 물건 한 개를 선택하고, 두 번째 상자로 옮겨 여기서도 물건 한 개를 선택한다. 그 후 세 번째 상자에서도 물건을 하나 선택하고, 이런 방식을 유한한 횟수로 반복해서, 마지막 상자에서 물건을 하나 선택하는 것으로 이 과정을 마칠 수 있다. 이 때, 각 상자에서 하나 씩의 물건을 선택함으로서 보여지는 상자-물건의 관계를 선택 함수에 해당한다고 할 수 있다. 그러나 이런 방법은 공집합이 아닌 집합의 모든 가산 집합족(countable family)에 대해서도 선택함수가 존재한다는, 가산 선택 공리 (Axiom of Countable Choice)를 증명하는 데에는 사용될 수 없다. 같은 방법이 공집합이 아닌 집합들의 무한열 (infinite sequence of nonempty sets)에 적용될 경우, 각각의 유한한 단계에서는 함수가 정의되나 전체 집합족에 대한 함수가 정의되는 단계가 존재하지 않게 된다. 결과적으로 체르멜로-프렝켈 집합론(ZF) 체계 하에서 선택공리 없이는 어떤 “극한” 선택함수도 구성할 수 없게 되는 것이다.

참고 문헌[편집]

바깥 고리[편집]