상대 호몰로지

위키백과, 우리 모두의 백과사전.
(상대 코호몰로지에서 넘어옴)
둘러보기로 가기 검색하러 가기

대수적 위상수학에서, 상대 호몰로지(relative homology)는 위상 공간의 어떤 부분공간에 대하여 사슬 복합체의 몫을 취하여 얻은 특이 호몰로지다.

정의[편집]

위상 공간이고, 가 그 부분공간이라고 하자. 그렇다면 그 사슬 복합체에 대하여 다음과 같은 벡터 공간짧은 완전열이 존재한다.

.

몫공간 의 원소를 상대 사슬(relative chain)이라고 한다.

에 대한 경계 연산자 를 보존한다. 따라서 의 경계를 정의할 수 있다. 이에 따라 는 사슬 복합체를 이루며, 그 호몰로지상대 호몰로지 라고 한다.

성질[편집]

(통상적인) 특이 호몰로지라고 하면, 이다. 즉, 통상적인 특이 호몰로지는 상대 호몰로지의 특수한 경우다.

절단 정리[편집]

를 만족한다고 하자. 여기서 닫힘이고, 내부이다. 그렇다면 이다. 이를 절단 정리(excision theorem)이라고 한다.

나아가, 가 위상수학적으로 비교적 정상적인 경우 보통 이다.

상대 호몰로지의 긴 완전열[편집]

지그재그 보조정리(zigzag lemma)를 사용하여, 다음과 같은 완전열을 정의할 수 있다.

.

여기서 는 짧은 완전열의 사상들

의 펑터 에 대한 이다. 는 지그재그 보조정리에 의하여 정의되는 사상이다. 즉, 상대 호몰로지 의 경계는 에 속한다.

에일렌베르크-스틴로드 공리[편집]

상대 호몰로지는 에일렌베르크-스틴로드 공리라는 공리계를 따른다.

참고 문헌[편집]