복소함수

위키백과, 우리 모두의 백과사전.
(복소 함수에서 넘어옴)
둘러보기로 가기 검색하러 가기

수학에서, 복소 함수(複素函數, 영어: function of a complex variable)는 정의역공역의 원소가 모두 복소수함수이다.

정의[편집]

복소 함수는 꼴의 함수이다. 그 대응 규칙은 다음과 같다.

여기서 이다.

[편집]

복소 함수에는 복소 지수 함수, 복소 삼각 함수, 복소로그 함수 등이 있다.

복소 지수함수[편집]

복소 지수 함수는 다음과 같이 표현되는 복소 함수이다.

다음과 같은 성질을 갖는다.

(오일러 공식)

이며,

로 나타낼 수 있다.

또한

이므로, 가 가질 수 있는 값은 폭 인 수평띠

안에 있게 되는데, 이 무한 띠를 기본영역(fundamental region)이라 부른다.

복소 삼각함수[편집]

실삼각함수에 대한 모든 익숙한 공식은 복소값에 대해서도 성립한다.

복소 쌍곡선함수[편집]

복소 삼각함수와 쌍곡선함수의 관계[편집]

복소쌍곡선함수삼각함수의 관계는 다음과 같다.

복소삼각함수쌍곡선함수의 관계는 다음과 같다.

복소 로그함수[편집]

자연로그(natural logarithm)는 로 표시하고 지수함수역함수로 정의한다.

이때, 실미적분학과 다른 점을 발견할 수 있다. 의 편각은 의 임의의 정수배를 더한 값들로 결정되므로, 복소자연로그 는 무한히 많은 값을 갖는다. 에 상응하는 의 값을 로 표기하고, 의 주값(principal value)이라 부른다. 따라서,

이다. 의 다른 값들은 의 정수배만큼 다르므로 의 다른 값들은

이 된다.

일반 거듭제곱[편집]

복소수 의 일반 거듭제곱 공식

로 정의된다.

참고 도서[편집]

Kreyszig, Erwin (1999). 《Advanced Engineering Mathematics 8th ed.》. John Wiley & Sons, INC. ISBN 0-471-15496-2.