마슬로프 지표

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색

심플렉틱 위상수학에서, 마슬로프 지표(Маслов指標, 영어: Maslov index)는 심플렉틱 다양체 속의 라그랑주 부분 다양체 속의 폐곡선에 대응되는, 폐곡선이 감기는 수를 측정하는 정수이다. 양자역학의 반고전적 근사법에서, 고전적 작용의 보정항으로 등장한다.

정의[편집]

차원 심플렉틱 벡터 공간 가 주어졌다고 하자. 그 속의 라그랑주 부분 공간들의 모듈러스 공간은 다음과 같다.

이는 차원의 동차공간이며, 이를 라그랑주 그라스만 다양체(영어: Lagrangian Grassmannian)이라고 한다.

라그랑주 그라스만 다양체의 기본군무한 순환군 이다. 구체적으로, 의 기본군은 이며, 이는 유니터리 행렬의 행렬식이 단위 복소수 임에서 기여한다. 직교 행렬의 행렬식은 이므로, 라그랑주 그라스만 다양체의 기본군은 이다.

차원 심플렉틱 다양체 이 주어졌다고 하자. 그렇다면, 각 접공간 에 대하여 라그랑주 그라스만 다양체를 취하면, 올이 올다발 을 정의할 수 있다. 이를 라그랑주 그라스만 다발이라고 한다.

속의 라그랑주 부분 다양체 가 주어졌다고 하자. 그렇다면, 임의의 에 대하여 라그랑주 그라스만 다발 으로 가는 다발 사상

이 존재한다. 만약 축약 가능 공간이라고 하면, 은 서로 호모토피 동치이며, 자연스러운 군 동형

이 주어진다. 따라서, 코호몰로지의 당김

이 존재한다. 이 경우, 의 생성원 에서의 마슬로프 지표(영어: Maslov index) 라고 한다. 폐곡선 또는 1차 호몰로지류 의 마슬로프 지표는 정수 이다.

역사[편집]

빅토르 파블로비치 마슬로프(러시아어: Ви́ктор Па́влович Ма́слов)가 WKB 근사를 다루기 위하여 도입하였다.[1][2] 이후 블라디미르 아르놀트가 1967년에 이를 대수적 위상수학을 통해 설명하였다.[3]

참고 문헌[편집]

  1. Маслов, В. П. (1965). 《Теория возмущений и асимптотические методы》 (러시아어). Издательство Московского государственного университета. 
  2. Маслов, В. П. (1965). 〈Метод ВКБ в многомерном случае〉. 《Введение в метод фазовы хинтегралов》. Библиотека сборника «Математика» (러시아어). Издательство «Мир». 
  3. Арнольд, В. И. (1967). “О характеристическом классе, входящем в условия квантования”. 《Функциональный анализ и его приложения》 (러시아어) 1 (1): 1–14.  영역 Arnol’d, V. I. (1967년 1월). “Characteristic class entering in quantization conditions” (PDF). 《Functional Analysis and Its Applications》 (영어) 1 (1): 1-13. doi:10.1007/BF01075861. 

외부 링크[편집]