단위행렬

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색

선형대수학에서 크기 단위행렬(單位行列)은 주대각선(왼쪽 위에서 오른쪽 아래로 가는 대각선)이 전부 1이고 나머지 원소는 0을 값으로 갖는 정사각행렬이다. 크기가 인 단위행렬은 보통 으로 표기하지만, 그 크기가 문맥상 자명하게 유추 가능한 경우 생략하여 로 쓰기도 한다.

의 가장 중요한 성질로는 다음의 것이 있다.

  이고   이다.

이런 성질 때문에 단위행렬은 행렬로 이루어진 단위 역할을 한다. 또한 크기의 가역행렬로 이루어진 항등원이기도 하다. (단위행렬은 자기 자신이 자신의 역원이므로 당연히 가역행렬임을 알 수 있다.)

또한 행렬을 차원 벡터 공간에서 자기 자신으로 가는 선형 변환으로 보면, 은 그 기저와 관계없이 항등함수임을 알 수 있다.

단위행렬의 번째 열은 단위벡터 가 된다. 단위벡터는 또한 단위행렬의 고유벡터이며 각각의 고윳값은 1이다. 이 고윳값 1은 유일한 고윳값이며, 중복도는 이다. 이로부터 단위행렬의 행렬식은 1이고 대각합임을 알 수 있다.

참조[편집]