과적합
과적합(過適合, overfitting) 또는 과대적합(過大適合)은 기계 학습(machine learning)에서 학습 데이터를 과하게 학습(overfitting)하는 것을 뜻한다. 일반적으로 학습 데이타는 실제 데이타의 부분 집합이므로 학습데이타에 대해서는 오차가 감소하지만 실제 데이타에 대해서는 오차가 증가하게 된다.
- 일반적으로 학습 데이타는 실제 데이타의 부분집합이며, 실제 데이타를 모두 수집하는 것은 불가능하다.
- 만약 실제 데이타를 모두 수집하여도 모든 데이타를 학습 시키기 위한 시간이 측정 불가능한 수준으로 증가할 수 있다.
- 학습 데이타만 가지고 실제 데이타의 오차가 증가하는 지점을 예측하는 것은 매우 어렵거나 불가능하다.
같이 보기[편집]
![]() |
이 글은 컴퓨터 과학에 관한 토막글입니다. 여러분의 지식으로 알차게 문서를 완성해 갑시다. |