위키백과, 우리 모두의 백과사전.
2001:2d8:6715:75d4::15a0:c516 (토론)님의 2020년 2월 18일 (화) 13:41 판 (물은 기억을 할 수 있다.)
물(water)
일반적인 성질
IUPAC 이름 Water, Oxidane
화학식 H2O
CAS 번호 7732-18-5
PubChem 962
ChemSpider 937
물리적 성질
상태 액체
분자량 18.01528 g/mol
녹는점 273.15 K
0.00 °C
32 °F
끓는점 373.13 K
99.98 °C
211.964 °F
밀도 (4 °C일 때) 1 g/cm3
형태 무색
열화학적 성질
ΔHf˚gas -241.83 kJ/mol
ΔHf˚liquid -285.83 kJ/mol
ΔHf˚solid -291.83 kJ/mol
gas 188.84 kJ/mol
liquid 69.95 kJ/mol
solid 41 kJ/mol
안전성
섭취 살아가는 데에 없어서는 안 되지만, 과량 섭취하면 흡수 지연으로 인해 두통, 경련 등을 일으켜 특히 운동 선수에게 치명적일 수 있다.
흡입 비독성. 의 폐표면 활성제를 녹일 수 있다. 물속에서의 질식사를 익사라고 한다.
피부 오래 담겨 있을 경우 피부박리가 생길 수 있다.
위험하지 않다.

(한국 한자: 水,영어: water) 또는 옥시데인(영어: oxidane)은 산소수소가 결합된 것으로, 생명을 유지하는 데에 없어서는 안 되는 화학 물질이다.[1] 화학식 H
2
O
를 가지며 표준 온도 압력(STAP : 섭씨 25℃ 1)에서 무색 투명하고, 무취무미(無臭無味)하다. 물은 지구 위의 거의 모든 곳에서 발견되며, 지표면의 70% 정도를 덮고 있다.[2] 물은 가장 보편적인 용매로 보통 액체 상태의 물을 가리킨다. 고체 상태인 것을 얼음, 기체 상태인 것을 수증기라고 부른다. 흔히 '김'(Steam)이라고 부르는 형태를 수증기와 혼동하는 경우도 있으나, 김은 엄연히 액체 상태의 작은 물방울들이 올라오는 것이기 때문에 수증기와는 다르다.

특성

얼린 물병이 팽창했다. 얼음은 물보다 부피가 크다.

물 분자는 두 개의 수소 원자와, 하나의 산소 원자가 공유결합(결합 길이 0.096 nm)을 한 H-O-H의 굽은형의 물질이다. 물분자는 수소원자와 산소 원자가 각각 전자를 내놓아 전자쌍을 만들고, 이 전자쌍을 함께 나누어 가짐(공유)으로써 결합되어 있다. 화학식H2O이다.

물은 자연적으로 세 가지 물질의 상태로 나타나며 지구 상에서 여러 형태를 지닌다. 수증기와 구름은 하늘에 있으며 바닷물빙산은 극지 바다에 있고 빙하에 있으며 대수층의 물은 땅 속에 있다.

  • 물은 표준 온도 압력에서 무취무미한 액체이다. 물과 얼음의 색은 본질적으로 살짝 파랗지만 물은 양이 얼마 없을 때에는 빛깔이 없는 것으로 보인다. 얼음 또한 색이 없어 보이며 수증기는 기체이므로 눈에 보이지 않는다.[3]
  • 물은 투명하므로 햇빛이 물 속에 들어올 수 있다. 따라서 수생식물은 물 속에서 살 수 있다. (오직 강한 자외선 빛만이 살짝 흡수된다.)
  • 비공유 전자쌍이 공유 전자쌍을 강하게 밀기 때문에 104.5˚구부러진 굽은형 구조를 이루고 있다.[4]
  • 물 분자는 선형이 아니며 산소 원자는 수소 원자보다 더 높은 전기 음성도를 갖고 있다. 산소가 수소보다 공유 전자쌍을 세게 끌어 당기므로 산소 원자가 약간의 음전하를 띠고 있는 반면 수소 원자는 약간의 양전하를 띠어 극성을 갖는다. 그 결과 물은 전기 쌍극자모멘트가 있는 극성 분자가 되므로[5] 좋은 무기 용매(보편적 용매)이다. 따라서 극성 물질과 잘 섞이며 염화나트륨과 같은 이온성 물질(이온 결합을 한 분자들)을 잘 녹인다. 그러나 무극성 물질과는 잘 섞이지 않는다.[6]
  • 대전된 막대(예, 털가죽으로 문지른 에보나이트 막대)를 물줄기에 가까이 하면, 물줄기가 대전된 막대 쪽으로 끌려온다. (표면장력 참고)
  • 물 분자는 평상시에는 수소산소가 쉽게 분리되지 않으나 전기분해와 같은 강한 에너지를 가해주면 분리가 가능해진다.
  • 순수한 물은 낮은 전기전도율을 갖지만 염화 나트륨과 같은 작은 양의 이온 물질이 훨씬 더 잘 용해되게끔 만든다.
  • 물은 3.98 °C (39.16 °F)에서 밀도가 최대이다.(1000 kg/m3)[7] 그 원인은 온도가 더 내려가면 물 분자는 얼음과 비슷한 육각구조를 만들어 약간의 빈 공간이 생기기 때문이다. 더 높은 온도가 아닌 3.98도인 이유는 온도가 더 높을 경우에는 분자의 평균 운동 속도가 증가해서 부피가 증가하기 때문이다. 이러한 공간은 얼음이 될 때에 생기는 것에 비하면 크지 않으나 여전히 밀도에 영향을 준다.
  • 물(다른 액체도 포함)의 끓는점은 기압에 의존한다. 이를테면 에베레스트 산 위에서 물은 68 °C (154 °F)에 끓지만 해수면에서 100 °C (212 °F, 373.15K)에 끓어 기화되는 것과 비교된다. 이와 반대로 열수구 주위의 바다 속 깊은 데 있는 물은 100 °C가 되어도 액체 상태를 유지한다. 100 °C에서 수증기의 부피는 액체 상태의 물 부피에 비해 약 1,244배 정도 증가한다. 한편 물은 다른 액체보다 끓이기 어려운데 이는 물을 끓일 때 쓰이는 에너지의 일부가 수소결합을 끊는 데 쓰이면서 완충되기 때문이다.
  • 물 분자는 1기압 내에서 0 °C, (32 °F, 273.15 K)에서 응고된다. 물이 응결할 때는 다른 분자들과는 달리 부피가 약 10% 정도 증가하는데, 이는 물 분자 사이의 수소결합이 강해지면서 육각구조를 만들고 이 사이에 빈 공간이 생기게 되기 때문이다.
  • 물은 에탄올과 같은 많은 물질과 가혼성을 가지므로 모든 부분에서 하나의 균질한 액체를 형성한다. 한편 물과 대부분의 기름은 섞이지 않는데 이는 가혼성이 없다고 하며 밀도에 따라 층을 형성한다. 기체로서의 수증기는 완전히 공기와 가혼성을 갖는다.
  • 세포 안의 모든 주된 구성 요소(단백질, DNA, 다당류) 또한 물에 잘 녹는다.
  • 물은 다른 수많은 용매와 더불어 불변 끓음 혼합물을 만든다.
  • 물이 얼 때, 찬물보다 뜨거운 물이 먼저 언다. 이를 발견한 사람의 이름을 따서 음펨바 효과라 부르는데 그 원인은 50년 가까이 밝혀지지 않다가 2013년 11월 싱가포르 연구진에 의해 물의 수소결합과 공유결합의 에너지 상관관계에 의한 현상임이 밝혀졌다.
  • 물의 성질로 물의 크기는 고체의 얼음 1m 가 존재하므로, 물분자의 크기를 알수있다면 1m길이의 물분자 갯수를 수학적으로 기본 계산을 할 수가 있다. 물분자는 산소원소 1개와 수소 원소 2개가 결합된 상태이므로 수소 원소 반지름이 25pm(피코미터)이고, 산소원소 반지름 60pm, 공유 결합 길이 95.84pm(피코미터) 이므로 수소 원소 반지름+산소원소 반지름+공유결합 길이 를 수소 원자 직경+산소 원자 직경+공유결합 길이 이렇게 더하면 물분자의 크기를 구할 수있다. 50pm+120pm+95.84pm=264.84pm 에서 공유결합 길이가 95.84pm이므로...산소원소 반지름 +수소 원소 반지름이 =95.84pm 이 성립해야 하므로..25pm(수송원소 반지름)+공유결합 길이 95.84pm+ 산소원소 반지름60pm=180.84pm 이렇게 물분자 크기를 구할 수있다. 95.84pm의 공유결합 길이가 고체의 얼음의 상태라고 한국 과학이 실증한 것이 아닌 인용한 자료를 바탕으로 수학 기본 계산을 하였으므로, 이 180.84pm이 고체 얼음의 물분자 하나의 크기 (길이=1m)이고, 1nm에서의 물분자는 숫자상으로 1nm=1000pm ÷180.84pm= 5.529 750 055 29 x 180.84pm=>999.999~pm 이므로, 고체의 얼음의 사각형을 가지는 상태와 육각형의 두가지 기초 공개 자료가 존재하므로, 사각 물분자 4개의 기준을 적용하면 1nm에 입체화 구조에서는 4개의 물분자=1nm가 성립하고, 1um= 4000개, 1mm= 4 000 000개, 1m= 1000mm= 4 000 000 000개 의 1m고체 얼음의 물분자 갯수 40억개를 구할 수있다. 고체의 얼음은 한국의 한강의 1월에 강물이 얼어서 1m x 1m의 고체 얼음을 만들고 있으므로 한강의 얼음의 1m x 1m의 고체 얼음의 표면의 물분자 갯수는 40억 x 40억= 4 000 000 000 x 4 000 000 000= 16 x 10^18=1.6 x 10^19 개의 한강의 1월 얼음의 1m x 1m 얼음의 표면의 갯수를 구할 수있다. 이것은 다시 물 1kg의 정의가 1900년부터 1970년까지 1kg=1L의 국제 단위로 사용되었고, 이것은 다시 물의 고체 얼음의 10cm x10cm x10cm=1kg으로 한강의 얼음을 이렇게 잘라서..1kg의 얼음을 얻을 수가 있으므로, 1kg= 10cm x 10cm x 10cm가 성립한다. 물 1m길이는 = 10cm x 10cm=100cm=1000mm 이므로 1mm의 물분자 갯수는 4 000 000개이고 10cm=40 000 000개가 된다.1m는 mm로 변환하면 1000mm이지 100mm가 아니다. 그러므로 물 1kg의 갯수를 1nm=4개의 고체 얼음으로 고정 시키면 1kg물 질량으로 물분작 갯수를 구할 수 있다. 400 000 000 x400 000 000 x400 000 000=64 x 10^24개= 6.4 x 10^ 25 갯수의 물 1kg의 고체 얼음에서의 갯수를 찾을 수 있다.
  • 액체의 물에 햇빛 눈에 보이는 파장 (한국과학 =가시광선)500nm의 청녹 하늘색 으로 한국의 한강에 낮 동안 비구름이 없으면 항상 고체의 1월의 얼음에 비추므로 고체의 얼음의 햇빛의 500nm청녹 하늘색 1m길이에 2 000 000개인 햇빛 500nm에 물분자 기준 갯수를 찾을 수있다. 고체의 한강 1월 얼음에서 물분자가 180pm의 크기를 갖고 있고, 1nm 입체 구조의 물분자는 물의 고체로 0도에서 한강 1월의 표면 강물을 0도의 얼음으로 만들어야 하므로, 물 분자 단독으로 고체의 얼음을 만들지 않고, 한강의 강변 모래위에 규소si의 녹는점 1430도의 도움으로 한강물이 고체 얼음의 물분자로 사각형 기본 얼음 결정을 만들고, 이것이 sio4의 결정화처럼 물분자가 si원소를 중심에 두고 물분자 4개가 규소 원소에 붙들려서 냉각이 되면, 고체의 얼음의 상태로 기본적으로 변환된다. 그러므로 1월 한강의 고체의 얼음위의 햇빛 500nm 청녹색 파장에 고체 얼음의 물분자 갯수를 찾을 수 있다. 500nm= 500 000pm ÷180= 2777. 777 777 777~ 이 되어서..500nm파장의 직경은 500nm÷3.14159= 159. 155 077 524nm x 4=636개의 500nm청녹 하늘색 눈에 보이는 파장의 얼음위에서의 물분자 직경의 갯수를 구할 수있다.햇빛은 청녹 하늘색 500nm외에 눈에 보이는 녹색의 파장이 565.47nm 이고...이것의 직경은 180nm가 되고..물분자 180pm의 크기에서 녹색 565.57nm의 직경이 180nm이므로 햇빛의 눈에 보이는 565.47nm 직경에 물분자 고체의 얼음의 갯수는 1000개가 된다. 햇빛의 녹색 500nm파장이 한국인이 상식적으로 생각하는 물분자와 햇빛의 크기 비율이 물분자의 원소가 1000배 햇빛의 녹색 하나 파장보다 작다라는 기본 사실을 위처럼의 기본 수학으로 검증을 하지 않은 것은 잘못된 기초 과학을 하고 있었기 때문이다. 액체의 물에는 햇빛이 통과를 해서 바닷물 기준 100m아래까지 투과되고 이후에 액체의 바닷물에 완전히 흡수가 된다. 액체의 물의 상태에서 햇빛의 청녹 하늘색과 녹색의 565nm를 흡수하는 방법은 고체의 얼음에서는 물분자의 회전이 고체 얼음의 결합이므로, 햇빛을 유리처럼 유전체 통과를 하는 상태가 되고, 액체의 물분자는 sio4의 1nm로 규소와 함께 액체의 로 존재하므로, 액체의 물의 조합이 햇빛 500nm 청녹 하늘색 직경의 크기의 물분자 500nm의 액체의 물의 군집을 하면, 이동하는 햇빛을 액체의 물은 직접 흡수하여 물분자의 전하로 전환이 가능하다. 즉, 액체의 물과 수증기의 물분자는 햇빛의 파장 크기와 같은 크기를 가지면 햇빛을 흡수하여 물분자의 전하로 변환이 가능하며, 이 사실로 해서 대기압의 물의 온도가 10도에서 석양이 지는 상태의 햇빛을 흡수한 물의 평균 하루 온도는 20도 가량으로 평균 상승하는 주기를 갖는다. 햇빛이 하루 종일 쏟아져도 한강의 물의 온도가 10도 정도만 충전이 되는 이유는 1/1000으로 물분자가 햇빛크기에 비해 작기 때문이다.
  • 물 액체 상태에서 1kg=1L 로 기본 변환이 되므로, 이것을 수도파이프로 물의 질량 1kg이나 1L의 질량을 간단하게 수도 파이프를 이용해서 질량을 축정할 수있다. 1kg= 1L= 10cm x 10cm x 10cm= (10cm x 10cm=100cm) x 10cm= 1m x 10cm이고 이것을 수도 파이프로 기준을 바꾸면 직경이 10cm 일때 1m길이의 수도파이프에 액체의 물을 채우면 1길이의 수도 파이프에 채워진 액체의 물의 질량은 1kg=1L가 된다. 이것은 액체의 물이 수도 파이프 1m길이에 직경 10cm에 액체의 물이 채워진 1kg=1L이므로 이것을 수증기 보일러로 만들어서 연소 불꽃을 생성하여 가열을 해서 수증기로 만들수가 있고, 이 구조는 수증기 기관 보일러 혹은 난방용 보일러의 기본 수도파이프 배관이 들어간 구조가 된다. 1kg의 물을 100도의 수증기로 만들면 수증기를 수도 배관으로 모아서 수증기 기관을 가동하거나, 물이 액체 상태에서 1kg의 질량을 가지므로, 연료 1kg으로 바꾸어서 수도 파이프 10cm공간에서 연소 불꽃을 만들면 10cm를 왕복하는 동력 기관을 만들수가 있고, 수증기 변환율과 연소율을 알면, 1m를 이동한 물 1kg이 되면 1W의 일을 하는 상태가 된다. 즉...10cm직경의 1m길이에 채운 물에 추가 배관을 1673m을 연결하여 액체의 물 1kg을 1673m를 이동시키면 이 만큼의 일을 하는 단위가 된다. 물을 연료로 바꾸면 석유엔진이 되고, 휘발유로 바꾸면 휘발유 엔진으로 바뀐다. 물 1kg의 단위는 너무 크므로 1m길이의 물분자는 40억개이고 이것을 1mm단위로 변환을 다시 할 수있다. 1000mm= 1m 이므로 액체의 물 1mm 길이에 물분자 갯수가 4 000 000개이고 , 이것을 구리 1mm 둘레를 가진 구리전선에 절연체를 씌운 틈을 물분자 하나만 통과하는 상태로 두면 , 구리 원자 반지름은 135pm,구리 원자 직경 270pm이므로, 구리 원소 2개의 직경 길이 더하기는 540pm이 되고 1.080nm에 구리 원자는 4개가 들어간다...물분자가 180pm크기를 갖지만 액체의 물로 바꾸면, 액체의 물 3개크기를 더하면 540pm 6개 물분자면 1080pm(=1.080nm)가 되어서 구리금속은 구리전선의 원형 케이블 형태로 만들어서 구리전선의 둘레를 1nm로 만들면 여기에 물분자 6개가 구리 금속 전선 케이블 둘레에 자리하게 되므로, 1um=4000개의 구리 금속 둘레에 물분자 갯수 6000개이고, 1mm= 4 000 000의 구리전선 케이블에 물분자 6 000 000개의 일정한 비율로 늘어난다. 그러므로, 물분자의 액체 상태 180pm을 수증기 상태 270pm으로 바꾸면 구리 금속 전선 케이블의 크기와 갖게 된다. 즉..물분자 갯수와 구리 전선의 케이블에서 물을 수증기 상태 270pm으로 바꾸면 고체의 구리1mm둘레를 가진 구리전선의 물분자 갯수는 4000 000개로 같아지게 된다. 그러므로 구리전선 1mm둘레 기준으로 1m 구리전선의 물분자 수증기 갯수를 찾을 수있고, 1kg =1L의 물은 수증기 기체 상태로 구리전선 1mm둘레를 가진 전선의 길이로 구할 수가 있다. 이 사실 때문에 1820년의 암페어의 과학적인 국제 단위 정의가 무한히 긴1m의 전기 도체로 대단히 비과학적인 용어를 사용하여 국제 단위를 만들고 있다.

화학적 성질

물은 화학적으로 많은 성질을 갖는다. 대표적인 성질은 공유결합, 산과 염기의 생성, 그리고 금속과의 산화(결합 및 부식)이다.

물 분자
수소결합
수소결합된 물 분자들

물에서의 수소결합(평균 결합 길이: 0.197 nm)은 전자를 끌어당기는 힘이 상대적으로 약한 수소 원자가 약한 세기의 이온의 성질을 띠고 전자를 끌어당기는 힘이 강한 산소원자가 강한 세기의 음이온의 성질을 띰으로써 나타나게 된다. 따라서 물은 극성 공유결합 물질이다. 또한, 중심 원자로 작용하는 수소 원자의 비공유 전자쌍과 산소와의 결합 고리인 수소결합(공유 전자쌍)의 작용력을 비교할 때 쌍극자 모멘트 값이 0이 아니므로 극성 분자로 분류된다.

한편 물은 높은 비열을 갖는데 이 또한 수소결합에 그 원인이 있다. 물을 가열할 때 쓰이는 에너지의 일부는 수소결합을 끊는 데 쓰이고 나머지의 에너지가 물의 온도를 높이는데 쓰이게 된다. 따라서 물이 다른 분자들에 비해 상대적으로 일정한 열에너지의 첨가로 온도를 올리기 어려운 물질이 되는 것이다. 수소결합으로 인해 물은 분자량이 비슷한 다른 물질에 비해 녹는점, 끓는점, 융해열, 기화열이 크다.[8] 물의 비열과 기화열이 크다는 점은 생물체의 수분과 체온이 일정하게 유지될 수 있다는 점과 관련이 있다.[9]물보다 얼음의 밀도가 작은 것은 수소결합에 의한 육각형 구조와 관련된다. 또한 표면장력과 모세관 현상도 수소결합으로 설명할 수 있다. 물은 다른 분자와 달리 그 점성에 비교해 표면장력이 큰데, 표면에 있는 물 분자가 공기 중으로 끌려가지 않고 내부에 있는 물 분자의 수소결합력을 받기 때문이다. 모세관 현상은 수소나 산소원자를 포함하지 않은 물질(예: 금속)에서는 잘 안 나타나는데 그 원인은 물이 모세관 현상을 일으킬 때 그 관을 이루는 분자와 수소결합력이 작용하기 때문이다. (유리관을 이루는 유리는 SiO2이므로 수소결합력이 작용한다.)

산과 염기

물은 보통 금속류를 녹여 염기를 만들고 비금속류를 녹여 산을 만든다. 염기의 기준은 양이온으로 하전된 수소 이온과 음이온으로 하전된 수산화이온이며, 수소이온이 많으면 산성이고 수산화이온이 많으면 염기성이며, 두 이온의 값이 0에 가까우면 중성이 된다. 대표적인 산으로는 염산, 질산, 황산 등이 있으며 이 3가지의 산은 모두 강한 산이다. 대표적인 알칼리(염기)로는 수산화나트륨, 수산화 칼륨, 암모니아수 등이 있으며 3가지 모두 강한 염기이다. 한편 산과 염기는 수소이온이나 수산화이온을 포함하고 있으므로 전해질이고, 이온 물질을 갖는 모든 물이 전해질이다.

금속과의 결합 및 부식

물은 산소와 함께 금속을 잘 부식시키는 성질이 있다. 의 경우 반응성이 크나 직접적으로는 산소와 잘 반응하지 않으며 아주 천천히 산화철을 생성한다. 하지만 물이 묻은 철은 상황이 다른데, 그 원인은 물이 철을 이온화하면서 전자를 내놓고 이 전자를 받은 산소원자가 양이온으로 하전된 철 분자와 결합을 하면서 이루어지기 때문이다. 이러한 산화는 물기가 완전히 없어질 때까지 멈추지 않아 결국 속까지 모두 산화시키고 만다. 금속의 산화를 막기 위해 기름칠을 하는 경우가 많은데 이는 기름과 물 사이의 반발력을 이용한 것이다.

한편 찬물에서 급격히 반응하는 금속은 포타슘, 칼슘, 소듐 등이 있고, 뜨거운 물에서 급격히 반응하는 금속은 마그네슘, 알루미늄, 아연 등이 있다.

공학에서의 물

수리학에서 1기압 하에서 물의 단위 중량은 보통 ω나 γw로 쓰며, 1000kg중/m³(1t중/m³=1g중/cm³)으로 나타낸다.[10] 지구상에서 물의 단위중량을 다룰 때는 편의상 '중'(force)을 빼고 1000kg/m³(1t/m³=1g/cm³)으로 쓴다.

☆-맛과 냄새 그리고 색깔-☆

물은 수많은 물질을 녹일 수 있어서 맛과 냄새가 다양하다. 사람과 다른 짐승들은 너무 염도가 높거나 부패한 물을 피하기 위하여 마실 수 있는지를 평가할 수 있는 진보된 감각을 갖고 있다. 이나 광천수로 광고하는 맛은 그 안에 녹아있는 광물에서 비롯한 것이다. 순수 H2O는 무취무미하다. 물의 색깔과 냄새는 식수로서 일차적인 주요한 판단기준으로 사용될수있다.[11]

자연의 물

우주 속의 물

물은 생명체 활동에 필수적이기 때문에 지구 이외의 천체에서 물이 발견되면 항상 관심을 받게 된다.

수증기는 다음과 같이 존재한다.

액체로 된 물은 다음과 같이 존재한다.

  • 지구: 지표의 71%[15]
  • 달: 적은 양의 물이 2008년에 발견되었다.
  • 화성 : 극미량의 물이 2011년 북극해에서 발견되었고 현재 조사중이다.

얼음은 다음과 같이 존재한다.

물과 거주가능 영역

우리가 알고 있듯이 액체와 기체, 고체로서의 물은 지구 위에 사는 생물의 생존에 필수적이다. 지구는 태양계생명체 거주가능 영역에 위치하여 있다. 태양으로부터 살짝 더 가까이 있거나 살짝 더 멀리 있었더라면 (약 5%, 곧 800만 킬로미터 정도) 기체, 고체, 액체라는 세 가지 형태가 동시에 존재할 가능성이 훨씬 적다.[17][18]

지구의 중력은 물이 대기를 지탱할 수 있게 도와 준다. 대기 속 수증기와 이산화탄소는 온도에 대한 완충 작용(온실 효과)을 제공하므로 표면 온도를 상대적으로 일정하게 유지시켜 준다. 지구가 더 작았더라면 대기가 더 얇아져 온도가 극단으로 치우칠 것이므로 화성과 같이 극관을 제외한 물의 형성을 막는다.

지구의 표면 온도는 들어오는 태양 복사(일사) 수준에 따라 오르락내리락 한다. 이는 온실 기체와 표면 및 대기 반사가 동반되면서 지구 온도가 유동적인 과정을 거친다는 것을 말해 준다. 그럼에도 불구하고 지질 시대를 거치면서 상대적으로 일정한 상태를 지속하고 있다. 이를 가이아 이론이라고 부른다.

한 행성 위의 물의 상태는 주위 압력에 따라 달라지는데 이는 한 행성의 중력이 결정한다. 어느 행성의 용적이 충분히 크다면 그곳 위의 물은 온도가 높아도 고체 상태를 유지한다. 그 까닭은 중력이 높은 압력을 만들어내기 때문인데 글리제 436 b[19]글리제 1214 b[20] 에서 볼 수 있는 현상이다.

물의 기원에 대해서는 다양한 이론이 존재한다.

지구 상의 물

물은 지표의 71%를 덮고 있다. 바다는 전체에서 97.2%를 차지한다.
지구 물의 분포 그림
물의 순환

수문학은 지구를 지나는 물의 이동, 물의 분포, 수질을 연구하는 학문이다. 물의 분포를 연구하는 것을 수로학이라고 한다. 물의 분포와 이동에서 지하수의 경우 수문지질학으로, 빙하의 경우 빙하학으로, 내륙수의 경우 육수학, 바다의 경우 해양학으로 부른다. 수문학을 동반한 생태학적 과정을 생태수문학이라고 한다.

한 행성의 표면 위 아래와 공중에 떠 있는 총체적인 물을 수권이라고 부른다. 지구의 물은 대체적으로 1,360,000,000 km3 (326,000,000 mi3)이다. 물은 지구에서 대부분 바다에 액체 형태로 존재한다. 인공적으로는 수소와 산소를 혼합한 뒤 방전을 일으켜서 만들어 낼 수 있다. 그리고 물의 분포는 바닷물 (97.33%), 빙하 (2.04%), 지하수 (0.61%), 호수와 강 (0.01%) 그리고 기타 (0.01%) 로 이루어져 있다.

지하수와 민물은 수자원으로서 인간에게 실질적으로나 잠재적으로 유용하다.

물의 순환

물의 순환수권 안의 물이 지속적으로 이동하는 것을 가리킨다. 이를테면 대기, 토양의 물, 지표수, 지하수, 식물 사이에서 물은 이동한다.

물은 물의 순환 속에서 이러한 지역을 돌며 끊임없이 움직이는데 다음의 과정을 이룬다.

  • 바다 등의 물이 공기로 증발하고 식물과 짐승으로부터 공기로 증산한다.
  • 공기에 응축되어 있는 수증기에서 바다나 땅으로 떨어지는 강수 현상을 일으킨다.
  • 육지로부터 보통 바다로까지 이어지는 표면 유출을 일으킨다.

민물

표면 유출한 일부 물은 이를테면 호수와 같이 어느 정도의 시간 동안 갇히게 된다. 높은 고도에서 겨울 동안 극북과 극남에서 눈은 만년설, 설괴빙원, 빙하 안에 모인다. 물은 또 땅에 스며들어 대수층으로 이동한다. 그 뒤 지하수는 이나 온천, 간헐천 표면으로 거슬러 흘러간다. 또, 지하수는 우물로 말미암아 인공적으로 뽑아낼 수 있다. 이러한 물은 깨끗한 민물이며 사람과 길짐승의 삶에 없어서는 안 될만큼 중요하다. 세계 여러 지역에서 이러한 민물은 부족 현상을 겪고 있다.

조석

조석은 달과 태양이 대양에 미치는 기조력으로 말미암아 지구의 대양 표면이 오르내리는 일을 가리킨다. 조석은 바다와 삼각강 수체의 깊이 변화를 일으키며 조류를 만들어낸다. 특정 장소에서 바뀌는 이러한 조석은 지구 회전의 영향과 지역적인 수심측량에 따라, 지구 기준에서 태양과 달의 위치가 바뀌어 일어난다.

바닷물

바닷물은 평균 3.5%의 염분에 적은 양의 기타 물질을 포함한다. 바닷물의 물리적 속성은 민물과 비교하여 몇 가지 면에서 큰 차이가 있다. 더 낮은 온도 (-1.9 °C)에서 얼고, 온도를 어는 점으로 낮추면 밀도가 올라간다. 일반적인 바다의 염도는 발트 해의 0.7% 정도에서 비롯하여 홍해, 페르시아해의 4.0%에 이르기까지 다양하다.

삶에 미치는 영향

오아시스사막채소가 나는 격리된 수자원이다.

생물학적 관점에서 물은 다른 물질과 구별되는 점으로 생명의 증식에 없어서는 안 되는 수많은 특성을 지니고 있다. 유기 화합물이 궁극적으로 복제를 할 수 있게 하는 방식으로 반응할 수 있게 함으로써 이러한 역할을 수행한다. 알려진 모든 형태의 생명체들은 물에 의존한다. 물은 체내의 수많은 용질이 녹이는 용매일뿐 아니라 또 체내의 물질대사에 필수적인 부분이므로 중요하다고 할 수 있다.

물은 광합성과 호흡에 필수적이다. 광합성을 하는 세포는 태양 에너지를 이용하여 물의 수소를 산소에서 분리시킨다. 수소는 기체나 물에서 흡수한 CO2와 결합하여 포도당을 형성하고 산소를 내뱉는다. 살아있는 모든 세포들은 이러한 재료를 이용하고, 수소와 산소를 산화시켜 태양 에너지를 포획하며, 그 과정 가운데 물과 CO2를 다시 형성한다. (세포 호흡)

물 속 생활

해양 규조류 - 주된 식물플랑크톤

지표의 물에는 생물로 가득하다. 생물의 최초의 형태는 물에서 발생하였다. 거의 모든 물고기는 예외 없이 물 속에서 살며 돌고래, 고래와 같은 수많은 종류의 해양 포유류가 있다. 양서류와 같은 특정한 종류의 짐승들은 물과 땅을 오가며 산다. 켈프, 과 같은 식물들은 물에서 자라며 일부 물속 생태계를 위한 기반으로 자리잡혀 있다. 플랑크톤은 일반적으로 바다 먹이 사슬의 토대가 된다.

바다의 척추동물들은 살아남기 위하여 산소를 보유하여야 하며 보유 방법은 다양하다. 물고기는 허파가 아닌 아가미를 가지고 있으나 폐어와 같은 어떠한 종류의 물고기들은 아가미와 허파 둘 다 지니고 있다. 돌고래, 고래, 수달, 물개와 같은 해양 포유류들은 공기를 마시기 위하여 주기적으로 지표로 올라와야 한다. 일부 양서류들은 피부를 통하여 산소를 마실 수 있다.

문명에 미치는 효과

문명은 역사적으로 강과 주된 물길을 중심으로 번성하여 왔다. 이른바 문명의 요람이라 불리는 메소포타미아티그리스유프라테스 강을 끼고 있었다. 고대 이집트 민족나일 강에 온전히 의지하였다. 로테르담, 런던, 몬트리올, 파리, 뉴욕, 부에노스아이레스, 상하이, 도쿄, 시카고, 홍콩과 같은 거대 도시들은 물에 다가가기 쉬운 곳에 있고 결과적으로 무역이 팽창하여 성공할 수 있었다. 싱가포르도 이와 같은 까닭으로 번성하였다. 물이 더 부족한 북아프리카중동과 같은 지역에서 마실 물을 구하는 것은 인간 발전에 주된 요인이 되었고 지금도 그러하다.

건강과 오염

사람이 마실 수 있는 물은 음료수라고 한다. 마시기에 알맞지 않은 물은 걸러내거나 정제하는 등의 다양한 물 처리로 말미암아 마실 물로 바꿀 수 있다. 마실 수는 없으나 헤엄을 치거나 몸을 씻는 데 사람에게 해가 없는 물은 다양한 이름으로 불리는데 이를 안전한 물로 부른다. 개발도상국에서 모든 폐수의 90%가 정화 및 처리되지 않은 채로 지역 강과 개울로 흘러간다.[21]

또한 물의 섭취는 동물의 기초대사량을 증가시켜 체중감량과의 유의미한 상관관계를 보인다.[22]

사람의 이용

농업

농업에서 물은 관개에 이용하며 이는 충분한 식량을 생산하는 주된 요소로 자리잡혀 있다. 관개는 몇몇 개발도상국에서 최대 90% 물을 차지하며[23] 선진국에서도 중요한 부분으로 잡혀 있다. (미국의 경우 민물의 30%가 관개에 이용된다)[24]

음수

어린 소녀가 물병의 물을 마시고 있다.
수질: 깨끗한 물을 마실 수 있는 인구의 분포도가 나라별로 나타나 있다.

사람의 은 체형에 따라 최저 55%에서 최고 95%의 물을 지닌다.[25] 몸이 정상적으로 기능하려면 날마다 1~5리터의 물을 마시어야 탈수 현상을 막을 수 있다. 섭취하여야 하는 정확한 물의 양은 활동 수준, 온도, 습도 등의 요인에 따라 다를 수 있다. 대부분은 물을 직접 마시는 것보다 음식이나 음료수를 통하여 소화시켜 물을 흡수한다. 건강한 사람이 물을 얼만큼 섭취하여야 하는지에 대한 명백한 답은 없으나 날마다 6~8잔의 물 (거의 2리터)을 마시는 것이 최소한의 적절한 양이라는 것이 대부분의 옹호자들의 생각이다.[26]

시베리아의 바이칼 호는 식수에 적합한 최대의 민물 원천이다. 이곳은 소금칼슘이 매우 적으므로 상당히 깨끗하다.

여러 곳의 물

일산화 이수소

같이 보기

           

기타

출처

  1. Water for Life
  2. CIA - The World Factbook
  3. Why Is Water Blue
  4. Water and its structure
  5. 김봉래 외 2 (2006년 7월 1일). 《완자 화학 Ⅰ(1권)》 초판. 비유와상징. 9쪽. 
  6. 김봉래 외 2 (2006년 7월 1일). 《완자 화학 Ⅰ(1권)》 초판. 비유와상징. 10쪽. 
  7. Kotz, J. C., Treichel, P., & Weaver, G. C. (2005). Chemistry & Chemical Reactivity. Thomson Brooks/Cole. ISBN 0-534-39597-X.
  8. 김봉래 외 2 (2006년 7월 1일). 《완자 화학 Ⅰ(1권)》 초판. 비유와상징. 16쪽. 
  9. 김봉래 외 2 (2006년 7월 1일). 《완자 화학 Ⅰ(1권)》 초판. 비유와상징. 22쪽. 
  10. 송재우 (2012). 《수리학》 3판. 구미서관. 10쪽. ISBN 978-89-8225-857-2. 
  11. (미연방 비상관리국(FEMA), 미국농무성, 미국적십자사 - 비상 식량 및 식수)https://www.redcross.org/content/dam/redcross/atg/PDF_s/Preparedness___Disaster_Recovery/Disaster_Preparedness/Food_Safety/foodKO.pdf
  12. “MESSENGER Scientists 'Astonished' to Find Water in Mercury's Thin Atmosphere - Planetary News : The Planetary Society”. 2008년 7월 7일에 원본 문서에서 보존된 문서. 2008년 7월 7일에 확인함. 
  13. Water Found on Distant Planet - TIME
  14. SPACE.com - Water Found in Extrasolar Planet's Atmosphere
  15. “CIA - The world factbook”. Central Intelligence Agency. 2008년 12월 20일에 확인함. 
  16. Sparrow, Giles (2006). The Solar System. Thunder Bay Press. ISBN 1-59223-579-4.
  17. Ehlers, E.; Krafft, T, ed (2001). "J. C. I. Dooge. "Integrated Management of Water Resources"". Understanding the Earth System: compartments, processes, and interactions. Springer. p. 116.
  18. habitable zone (HZ)
  19. “Strange alien world made of 'hot ice' - space - 16 May 2007 - New Scientist”. 2008년 7월 6일에 원본 문서에서 보존된 문서. 2010년 7월 19일에 확인함. 
  20. CfA Press Room
  21. UNEP International Environment (2002). Environmentally Sound Technology for Wastewater and Stormwater Management: An International Source Book. IWA Publishing. ISBN 1-84339-008-6. OCLC 49204666.
  22. “Weight Regulation in the Pigeon 128p FIG 1.” (PDF). 2016년 9월 23일에 원본 문서 (PDF)에서 보존된 문서. 2016년 9월 23일에 확인함. 
  23. “보관 된 사본”. 2012년 3월 1일에 원본 문서에서 보존된 문서. 2009년 3월 12일에 확인함. 
  24. “Water Use in the United States”. 2009년 8월 14일에 원본 문서에서 보존된 문서. 2009년 7월 30일에 확인함. 
  25. Re: What percentage of the human body is composed of water?
  26. BBC - Health: Nutrition

외부 링크