NS5-막

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색

NS5-막(영어: NS5-brane)은 5-막의 하나로, 기본 끈 (F-끈)의 자기 이중성 개체다.

정의[편집]

미분형식 전기역학에서, 일반적으로 p차 형식 게이지 퍼텐셜은 (p-1)차원 막과 전기적으로 상호작용한다. II종 끈 이론에서는 2차 형식인 NS-NS 게이지 퍼텐셜 (캘브-라몽 장) B_{\mu\nu}가 있고, 이는 1차원 막인 기본 끈(F-string)과 전기적으로 상호작용한다.

전자기 이중성(electromagnetic duality)에 의하여, 모든 전기적 현상에 대응하는 자기적 현상이 존재하여야 한다. 여기서 "자기적 현상"이란 다음과 같다. p차 퍼텐셜 A의 경우 (p+1)차 장세기(패러데이 텐서) dA를 정의한다. 시공간이 d차원이라면, 장세기 형식의 호지 쌍대 *dA(d-p-1)차 형식이다. 전자기 이중성에 따라서 *dA를 또다른 장세기 형식으로 간주할 수 있다. 이에 대응하는 퍼텐셜 \tilde Ad\tilde A=*dA를 만족한다. 즉, \tilde A(d-p-2)차 형식이고, 이는 (d-p-3)차원 막과 결합하게 된다.

이에 따라, 10차원 시공간에 존재하는 II종 끈 이론에서는 2차 게이지 퍼텐셜에 자기 쌍대인 6차 게이지 퍼텐셜이 존재하고, 이는 5차원 막과 결합하게 된다. 이 막을 NS5-막이라고 한다. 마찬가지로, 26차원에 존재하는 보손 끈 이론에서는 자기 21-막이 존재한다.

성질[편집]

장력[편집]

NS5-막의 전하는 캘브-라몽 장자기 홀극에 해당하므로, 자기 홀극의 디랙 양자화 조건(Dirac quantization condition)을 써서 구할 수 있다. 또한, NS5-막은 BPS 개체이므로 그 장력(에너지 밀도)과 전하가 비례한다. 이로써 NS5-막의 장력을 구할 수 있다. 특히, S-이중성을 사용하여 D1-막 장력과 D5-막 장력의 곱이 F-끈 장력과 NS5-막 장력의 곱과 같게 된다.[1]:183–184 D-막의 장력은

T_{\text{D}p}=\frac1{g_\text{s}\ell_\text{s}(2\pi\ell_\text{s})^p}

이고

T_\text{F1}=\frac1{2\pi\ell_\text{s}^2}

이므로,

T_\text{NS5}=T_{D1}T_{D5}/T_{F1}=\frac1{g_\text{s}^2\ell_\text{s}(2\pi\ell_\text{s})^5}

이다. 여기서 \ell_\text{s}^2=\alpha'이다.

NS5-막의 장력은 닫힌 끈 결합 상수 g의 제곱에 반비례한다.

T_\text{NS5}\propto g_\text{s}^{-2}

따라서 NS5-막은 섭동 이론에서는 나타나지 않고, 기본 끈으로 이루어진 솔리톤임을 알 수 있다. 반면, D-막의 장력은 결합 상수에 반비례하므로,

T_{\text{D}p}\propto g_\text{s}^{-1}

NS5-막이 D-막보다 더 비섭동적인 개체이다.

NS5-막의 장력

T_\text{NS5}=\frac1{(2\pi)^5g_\text{s}^2\ell_\text{s}^6}

은 M5-막의 장력

T_\text{M5}=\frac1{(2\pi)^5\ell_\text{p}^6}

과 같다. 여기서

\ell_\text{p}=\sqrt[3]{g_\text{s}}\sqrt{\alpha'}

는 11차원 플랑크 길이이고, g_\text{s}는 닫힌 끈 결합 상수, \alpha'=\ell_\text{s}^2는 레제 기울기(Regge slope)이다. 이는 IIA NS5-막이 사실 M이론에서 감기지 않은 M5-막이기 때문이다.

세계 부피 이론[편집]

하나의 NS5-막의 세계부피 위에 존재하는 이론은 M5-막의 세계부피 이론으로부터 유도할 수 있다.[2]

NS5-막은 ½-BPS 대상이므로, 그 세계부피 이론은 IIA/B 초끈 이론에서는 6차원 \mathcal N=2 초대칭 (즉, 16개의 초전하) 이론이다. 6차원에서는 \mathcal N=(2,0) 또는 \mathcal N=(1,1) 초대칭이 가능한데, \mathcal N=(2,0)은 IIA종 초끈 이론의 NS5-막, \mathcal N=(1,1)은 IIB종 초끈 이론의 NS5-막에 해당한다.[3]:212 잡종 끈 이론에서의 NS5-막 위에는 \mathcal N=1 (8개의 초전하) 초대칭 이론이 존재한다.

이들 이론은 다음과 같은 장들을 가진다.

IIA NS5-막 세계부피 이론의 장들
기호 푸앵카레 표현 개수 질량껍질 위 자유도
\phi^i 스칼라 5 5
\psi^I 왼손 바일 스피너 2 8
B_{\mu\nu}^- 반자기쌍대(反自己雙對, ASD, 영어: anti-self-dual) 2차 미분형식 게이지장 1 3
IIB NS5-막 세계부피 이론의 장들
기호 푸앵카레 표현 개수 질량껍질 위 자유도
\phi^i 스칼라 4 4
\Psi=(\psi_L,\psi_R) 디랙 스피너 1 8
A_\mu 벡터 게이지장 1 6

IIB NS5-막에는 벡터 게이지 퍼텐셜이 존재한다. 따라서, 이에 대하여 대전된, 6차원 세계부피 속에 존재하는 0-막과 2-막이 존재한다. 이는 각각 IIB NS5-막에 붙어 있는 D1-막D3-막에 해당한다. 이들은 T-이중성S-이중성으로 다음과 같이 해석할 수 있다.[4]:23

(6차원 0-막) F1–D5 \stackrel{\text{S}}\implies D1–NS5
(6차원 2-막) F1–D3 \stackrel{\text{S}}\implies D1–D3 \stackrel{\text{T}}\implies D3–D5 \stackrel{\text{S}}\implies D3–NS5

또한, IIB종 초끈 이론SL(2;ℤ) S-이중성에 따라 D5-막과 NS5-막들이 결합한 (p,q) 5-막 또한 존재한다.

IIA NS5-막에는 2차 미분형식 퍼텐셜이 존재하므로, 6차원 세계부피 속에 존재하는 1-막이 존재한다. 이는 IIA NS5-막에 붙어 있는 D2-막에 해당한다. 이는 M이론을 통해 M2-막이 M5-막에 붙어 있는 것으로 해석할 수 있다.[5]:297–300

이러한 상태들은 하나니-위튼 전이[6][4] 등을 사용하여, 초대칭 게이지 이론을 분석할 때 쓰인다.

꼬마 끈 이론[편집]

겹친 NS5-막의 6차원 세계부피 위에 존재하는 이론은 꼬마 끈 이론(영어: little string theory)이라고 불리는 이론이다.[7][8][1]:204–205 이 이론은 6차원에 존재하는, 을 포함하는 이론이므로, 끈 이론의 일종이다. 하지만 이 이론은 (일반적인 끈 이론과 달리) 중력을 포함하지 않는다. 이는 나탄 자이베르크가 1997년에 발견하였다.[9]

꼬마 끈 이론은 6차원에 존재하는 \mathcal N=2 초대칭 (즉, 16개의 초전하) 이론이다. 6차원에서는 \mathcal N=(2,0) 또는 \mathcal N=(1,1) 초대칭이 가능한데, \mathcal N=(2,0)은 IIA종 초끈 이론의 NS5-막, \mathcal N=(1,1)은 IIB종 초끈 이론의 NS5-막에 해당한다.[7]:930

M이론과 이중성[편집]

IIA 끈 이론은 M이론을 원에 축소화하여 얻는다. IIA 끈 이론의 NS5-막은 M이론에서 감기지 않은 M5-막으로 해석할 수 있다. (반면, 축소된 차원에 감긴 M5-막은 D4-막을 이룬다.) IIB 끈 이론에서의 NS5-막은 IIB 끈 이론의 S-이중성에 따라 D5-막과 대응하며, 이는 T-이중성을 통해 IIA 이론에서의 칼루차-클라인 5-막과 대응한다.

T-이중성을 가하면, NS5-막은 특정한 형태의 특이점을 가지는 점근 국소 평탄(漸近局所平坦, ALF, 영어: asymptotically locally flat) 기하학과 대응한다. 예를 들어, N개의 겹친 평행한 NS5-막은 ADE 분류에서 AN−1 꼴의 초켈러 ALF 공간과 대응한다.[10][11][5]:295–300

역사[편집]

커티스 캘런 2세(영어: Curtis G. Callan, Jr.)와 제프리 하비(영어: Jeffrey Harvey), 앤드루 스트로민저가 1991년 발견하였다.[12]

참고 문헌[편집]

  1. (영어) Polchinski, Joseph (1998). 《String Theory, Volume 2: Superstring theory and beyond》. Cambridge University Press. doi:10.2277/0521633044. Bibcode1998stth.book.....P. ISBN 978-0521633048
  2. (영어) Igor Bandosa, Alexei Nurmagambetova, Dmitri Sorokin (2000년 10월 16일). The type IIA NS5-brane. 《Nuclear Physics B》 586 (1–2): 315–330. arXiv:hep-th/0003169. doi:10.1016/S0550-3213(00)00398-9. Bibcode2000NuPhB.586..315B. ISSN 0550-3213.
  3. Kiritsis, String Theory in a Nutshell
  4. (영어) Karch, Andreas (1998년). 《Field theory dynamics from branes in string theory》, 박사 학위 논문, 베를린 훔볼트 대학교. arXiv:hep-th/9812072. Bibcode1998PhDT.......324K
  5. (영어) Johnson, Clifford V. (2003). 《D-Branes》, Cambridge Monographs on Mathematical Physics, Cambridge University Press. doi:10.1017/CBO9780511606540. ISBN 9780521809122
  6. (영어) Hanany, Amihay, Edward Witten. . arXiv:hep-th/9611230. doi:10.1016/S0550-3213(97)00157-0. Bibcode1997NuPhB.492..152H.
  7. (영어) Aharony, Ofer (2000년 3월 7일). A brief review of ‘little string theories’. 《Classical and Quantum Gravity》 17 (5): 929–938. arXiv:hep-th/9911147. doi:10.1088/0264-9381/17/5/302. Bibcode2000CQGra..17..929A. ISSN 0264-9381.
  8. A. Fotopoulos, M.P. Petropoulos, N. Prezas, K. Sfetsos (2010년 7월). NS5-branes, holography and CFT deformations. 《Fortschritte der Physik》 58 (7-9): 888–892. arXiv:1002.4090. doi:10.1002/prop.201000038. Bibcode2010ForPh..58..888F. ISSN 0015-8208.
  9. (영어) Seiberg, Nathan (1997년 9월 11일). Matrix Description of M-theory on T5 and T5/Z2. 《Physics Letters B》 408 (1–4): 98–104. arXiv:hep-th/9705221. doi:10.1016/S0370-2693(97)00805-8. Bibcode1997PhLB..408...98S. ISSN 0370-2693.
  10. (영어) . arXiv:hep-th/9511164. doi:10.1016/0550-3213(96)00008-9. Bibcode1996NuPhB.463...55O. ISSN 0550-3213.
  11. (영어) Tong, David (2002년 7월). NS5-branes, T-duality and worldsheet instantons. 《Journal of High Energy Physics》 2002 (7): 13. arXiv:hep-th/0204186. doi:10.1088/1126-6708/2002/07/013. Bibcode2002JHEP...07..013T. ISSN 1126-6708.
  12. Callan, Curtis G., Jeffrey Harvey, Andrew Strominger (1991년 8월). Worldsheet approach to heterotic instantons and solitons. 《Nuclear Physics B》 359 (2–3): 611–634. doi:10.1016/0550-3213(91)90074-8. Bibcode1991NuPhB.359..611C. ISSN 0550-3213.