CUDA

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색
쿠다
CUDA
개발자 엔비디아
최근 버전 5.0 / 2012년 10월 15일, 707일 경과
운영 체제 윈도 XP 이상
맥 OS X
리눅스
플랫폼 아래의 지원 GPU 참고
종류 GPGPU
라이선스 프리웨어
웹사이트 www.nvidia.com/object/cuda_home_new.html
Example of CUDA processing flow
1. Copy data from main mem to GPU mem
2. CPU instructs the process to GPU
3. GPU execute parallel in each core
4. Copy the result from GPU mem to main mem

CUDA ("Compute Unified Device Architecture", 쿠다)는 그래픽 처리 장치(GPU)에서 수행하는 (병렬 처리) 알고리즘을 C 프로그래밍 언어를 비롯한 산업 표준 언어를 사용하여 작성할 수 있도록 하는 GPGPU 기술이다. CUDA는 엔비디아가 개발해오고 있으며 이 아키텍처를 사용하려면 엔비디아 GPU와 특별한 스트림 처리 드라이버가 필요하다. CUDA는 G8X GPU로 구성된 지포스 8 시리즈급 이상에서 동작한다. CUDA는 CUDA GPU 안의 명령셋과 대용량 병렬 처리 메모리를 접근할 수 있도록 해 준다.

개발자는 패스스케일 오픈64 C 컴파일러로 컴파일 된 '쿠다를 위한 C' (C언어를 엔비디아가 확장한 것) 를 사용하여 GPU 상에서 실행시킬 알고리듬을 작성할 수 있다. 쿠다 구조는 일련의 계산 인터페이스를 지원하며 이에는 OpenCL, DirectX Compute가 포함된다. C 언어가 아닌 다른 프로그래밍언어에서의 개발을 위한 래퍼(Wrapper)도 있는데, 현재 파이썬, 포트란, 자바매트랩 등을 위한 것들이 있다.

최신 드라이버는 모두 필요한 쿠다 콤포넌트를 담고 있다. 쿠다는 모든 엔비디아 GPU (G8X 시리즈 이후) 를 지원하며 이 대상에는 지포스, 쿼드로, 테슬라 제품군이 포함된다. 엔비디아는 지포스 8 시리즈를 위해 개발된 프로그램들은 수정 없이 모든 미래의 엔비디아 비디오 카드에서 실행될 것이라고 선언하였다.

쿠다를 통해 개발자들은 쿠다 GPU 안 병렬 계산 요소 고유의 명령어 집합과 메모리에 접근할 수 있다. 쿠다를 사용하여 최신 엔비디아 GPU를 효과적으로 개방적으로 사용할 수 있다. 그러나 CPU와는 달리 GPU는 병렬 다수 코어 구조를 가지고 있고, 각 코어는 수천 스레드를 동시에 실행시킬 수 있다. 응용 프로그램이 수행하는 작업(계산)이 이러한 병렬처리연산에 적합할 경우, GPU를 이용함으로써 커다란 성능 향상을 기대할 수 있다.

컴퓨터 게임 업계에서는 그래픽 랜더링에 덧붙여, 그래픽 카드를 게임 물리 계산 (파편, 연기, 불, 유체 등 물리 효과)에 사용되며, 예로는 피직스불렛이 있다. 쿠다는 그래픽이 아닌 응용 프로그램, 즉, 계산 생물학, 암호학, 그리고 다른 분야에서 10배 또는 그 이상의 속도 혜택을 가져왔다. 이 한 예는 BOINC 분산 계산 클라이언트 이다.

쿠다는 저수준 API와 고수준 API 모두를 제공한다. 최초의 CUDA SDK는 2007년 2월 15일에 공개되었으며 마이크로소프트 윈도리눅스를 지원했다. 맥 OS X지원은 2.0 버전에 추가되었다.

이점[편집]

쿠다가 그래픽 API를 사용하는 전통적인 범용 GPU에 비해 가지는 몇가지 장점은 다음과 같다.

  • 흩뿌린 읽기 - 코드가 메모리의 임의 위치에서 데이터를 읽을 수 있다.
  • 공유 메모리 - 쿠다는 고속 공유 메모리 지역 (16 또는 48KB 크기) 을 드러내어 스레드 간에 나눌 수 있게 해 준다. 이는 사용자 관리 캐시로 사용될 수 있는데, 텍스처 룩업을 이용하는 경우 보다 더 빠른 대역폭이 가능해진다.
  • 디바이스 상의 읽기, 쓰기가 호스트보다 더 빠르다.
  • 정수와 비트 단위 연산을 충분히 지원한다. 정수 텍스처 룩업이 포함된다.

제한[편집]

  • 재귀호출, 함수 포인터가 없는 C 언어의 하부 집합을 확장하여 사용한다. 그러나 한개의 처리 장치가 여러개의 쪼개진 메모리 공간에 대하여 작업하여야 하는 점이 다른 C 언어 실행 환경과 다른 점이다.
  • 텍스처 랜더링은 지원 되지 않는다.
  • 배정도에 관해서는 IEEE 754 표준과 다르지 않다. 단정도에서는 비정상값과 신호 NaN이 지원되지 않고, IEEE 반올림 모드 가운데서는 두가지만 지원하며, 이도 명령어에 따라서 지원되는 것으로 제어 단어(Control word)에서 지원 되는 것은 아니다.(이것이 제한점인지는 논란의 대상이 될 수 있다) 그리고 나눗셈과 제곱근의 정밀도가 단정도에 비해 조금 낮다.
  • CPU와 GPU 사이의 버스 대역폭과 시간 지연에서 병목이 발생할 수 있다.
  • 스레드가 최소한 32개씩 모여서 실행되어야 최선의 성능 향상을 얻을 수 있으며, 스레드 수의 합이 수천개가 되어야 한다. 프로그램 코드에서의 분기는, 각각의 32 스레드가 같은 실행 경로를 따른다면, 성능에 큰 지장을 주지 않는다. SIMD 실행 모델은 어떠한 내재적으로 분기하는 임무에게는 심각한 제한이 된다. (예를 들어, 광선 추적 가속 자료 구조)
  • 쿠다 기반 GPU는 엔비디아에서만 나온다.

예제[편집]

C++[편집]

이 예제는 텍스처 하나를 어떤 이미지로부터 GPU상의 행렬로 읽어들인다.

cudaArray* cu_array;
texture<float, 2> tex;
 
// 행렬 할당
cudaMallocArray(&cu_array, cudaCreateChannelDesc<float>(), width, height);
 
// 이미지 데이터를 행렬로 복사
cudaMemcpy(cu_array, image, width*height, cudaMemcpyHostToDevice);
 
// 행렬을 텍스처에 연결한다.
cudaBindTexture(tex, cu_array);
 
// 커널을 실행한다
dim3 blockDim(16, 16, 1);
dim3 gridDim(width / blockDim.x, height / blockDim.y, 1);
kernel<<< gridDim, blockDim, 0 >>>(d_odata, width, height);
cudaUnbindTexture(tex);
 
__global__ void kernel(float* odata, int height, int width)
{
   unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
   unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;
   float c = texfetch(tex, x, y);
   odata[y*width+x] = c;
}

파이썬[편집]

파이선 언어의 바인딩은 PyCUDA에서 구할 수 있다.

아래 예제는 두 배열의 곱을 GPU 상에서 계산한다.

import pycuda.driver as drv
import numpy
import pycuda.autoinit
 
mod = drv.SourceModule("""
__global__ void multiply_them(float *dest, float *a, float *b)
{
  const int i = threadIdx.x;
  dest[i] = a[i] * b[i];
}
""")
 
multiply_them = mod.get_function("multiply_them")
 
a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)
 
dest = numpy.zeros_like(a)
multiply_them(
        drv.Out(dest), drv.In(a), drv.In(b),
        block=(400,1,1))
 
print dest-a*b

행렬 곱셈을 단순화하는 추가 파이선 바인딩을 사용한 예제이다.

import numpy
from pycublas import CUBLASMatrix
A = CUBLASMatrix( numpy.mat([[1,2,3],[4,5,6]],numpy.float32) )
B = CUBLASMatrix( numpy.mat([[2,3],[4,5],[6,7]],numpy.float32) )
C = A*B
print C.np_mat()

같이 보기[편집]

주석 및 참고 문헌[편집]

  1. 제이슨 샌더스, 에드워드 캔드롯 저, 박춘언 역, 예제로 배우는 CUDA 프로그래밍(입문자를 위한 GPGPU 프로그래밍의 기초), ISBN 9788994774060.
  2. Farber, Rob 저, CUDA Application Design and Development, ISBN 9780123884268.
  3. Hwu, Wen-Mei 저, GPU Computing GEMs - Jade Edition, ISBN 9780123859631.

바깥 고리[편집]