휠러-디윗 방정식

위키백과, 우리 모두의 백과사전.
(휠러-드위트 방정식에서 넘어옴)
이동: 둘러보기, 검색

휠러-디윗 방정식(-方程式, Wheeler-deWitt equation)은 정준 양자 중력을 나타내는 함수형 미분 방정식이다. 중력의 미분동형사상 불변성을 나타낸다.

전개[편집]

일반 상대성 이론은 미분동형사상 불변성을 게이지 대칭으로 지닌다. ADM 수식체계에서, 계량 텐서의 네 게이지 자유도는 라그랑주 승수의 형태로 나타난다. 즉, 그 운동 방정식은 다음과 같다.

H=0
P^i=0

여기서 HP^ig_{ij}와 그 켤레 운동량 \pi^{ij}를 포함하는 표현이다. 정준 양자 중력에서는 이들을 연산자로 승격시킨다. 따라서 HP^i도 연산자로 바뀐다. 휠러-디윗 방정식은 다음과 같다.

\hat H|\psi\rangle=0
\hat P^i|\psi\rangle=0

역사[편집]

브라이스 디윗(영어: Bryce DeWitt)이 1967년에 도입하였다.[1]

주석[편집]

  1. DeWitt, B. S. (1967). "Quantum Theory of Gravity. I. The Canonical Theory". Phys. Rev. 160 (5): 1113–1148.