피카르의 정리

위키백과, 우리 모두의 백과사전.

복소해석학에서 피카르의 대정리(영어: Picard’s great theorem)와 피카르의 소정리(영어: Picard’s little theorem)는 정칙 함수의 특이점 근처에서의 에 대한 정리다.

정의[편집]

리만 곡면 및 점 가 주어졌다고 하고, 정칙 함수

에서 본질적 특이점을 갖는다고 하자. 피카르의 대정리에 따르면, 다음 성질을 만족시키는 두 점 이 존재한다.

  • 임의의 근방 및 임의의 에 대하여, 가 존재한다.

따름정리[편집]

피카르의 소정리에 따르면, 만약 정칙 함수라면, 다음 세 명제 가운데 하나가 성립한다.

이는 리우빌 정리를 강화한 것이다.

피카르의 소정리는 피카르의 대정리의 따름정리이다. 즉, 이며 라고 하자. 그렇다면 는 무한대에서의 성질에 따라 다음과 같은 세 가지 경우로 분류된다.

  • 만약 가 무한대에서 정칙 함수라면, 리우빌 정리에 따라 상수 함수이다.
  • 만약 가 무한대에서 극점을 갖는다면, 는 다항식이다. 이 경우 대수학의 기본정리에 따라 이다.
  • 만약 가 무한대에서 본질적 특이점을 갖는다면, 피카르의 대정리에 따라 의 꼴이며, 이므로 로 놓을 수 있다.

[편집]

함수 에서 본질적 특이점을 갖는다. 이 경우, 피카르의 대정리에 의하여 존재하는 두 값들은

이다.

위 예에 뫼비우스 변환을 가해, 가 임의의 값을 갖는 예를 찾을 수 있다.

역사[편집]

에밀 피카르의 이름을 땄다.

참고 문헌[편집]

외부 링크[편집]