이분 그래프

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색
이분 그래프의 예

그래프 이론에서, 이분 그래프(二分graph, 영어: bipartite graph)란 모든 변이 X에 있는 꼭짓점과 Y의 꼭짓점을 잇는 형태로 되도록 꼭짓점의 집합을 두 개의 부분집합 X, Y로 나눌 수 있는 그래프이다. 다르게 표현하자면, 그래프의 꼭짓점을 빨강과 파랑으로 색칠하되, 모든 변이 빨강과 파랑 꼭짓점을 포함하도록 색칠할 수 있는 경우 이분 그래프라고 한다. 같은 말로 색칠수 χ(G)가 2이하인 경우이다.

성질[편집]

홀수 길이의 순환 그래프가 이분 그래프가 아니라는 점은 쉽게 증명할 수 있다. 아울러 다음과 같은 더 강력한 정리가 쉽게 증명된다. 그래프가 이분 그래프일 필요충분조건은 홀수 길이의 순환이 없다는 것이다.

알고리즘[편집]

주어진 그래프가 이분 그래프인지 확인하는 것은 어렵지 않다. 꼭짓점 하나를 빨강으로 칠한 후 이웃 꼭짓점들은 녹색으로 칠하고 그 이웃들은 빨강으로 칠하는 것들을 반복하면서, 같은 색깔의 꼭짓점이 서로 연결되어 있는 모순이 발생하는지 아닌지 확인만 하면 된다. 예를 들어, 크기가 3인 순환 그래프는 이분 그래프가 아니다.

바깥 고리[편집]

  • (영어) Graph, bipartite. 《Encyclopedia of Mathematics》. Springer (2001).

같이 보기[편집]