비대칭도

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색
비대칭도 실험 자료의 예

확률 이론통계학에서, 비대칭도(非對稱度, skewness) 또는 왜도(歪度)는 실수확률 변수확률 분포 비대칭성을 나타내는 지표이다. 왜도의 값은 양수나 음수가 될 수 있으며 정의되지 않을 수도 있다. 왜도가 음수일 경우에는 확률밀도함수의 왼쪽 부분에 긴 꼬리를 가지며 중앙값을 포함한 자료가 오른쪽에 더 많이 분포해 있다. 왜도가 양수일 때는 확률밀도함수의 오른쪽 부분에 긴 꼬리를 가지며 자료가 왼쪽에 더 많이 분포해 있다는 것을 나타낸다. 평균과 중앙값이 같으면 왜도는 0이 된다.

정의[편집]

확률변수 X의 왜도는 3번째 표준 모멘트로 정의되며 γ1로 표시한다. γ1이라는 기호는 칼 피어슨이 사용했다.[1]


    \gamma_1 = \operatorname{E}\Big[\big(\tfrac{X-\mu}{\sigma}\big)^{\!3}\, \Big] 
             = \frac{\mu_3}{\sigma^3} 
             = \frac{\mu_3}{\mu_2^{3/2}}\,

여기서 μii번째 중심적률을 의미한다. 왜도를 Skew[X]로 표현하기도 한다. 로널드 피셔\sqrt{\beta_1}로 표현했지만 왜도는 음수가 될 수 있어 불편한 점이 있었다.

확률변수 X의 평균 μ, 표준편차 σ에 대해, 왜도를 나타내는 식을 풀어 쓰면


    \gamma_1 
     = \operatorname{E}\bigg[\Big(\frac{X-\mu}{\sigma}\Big)^{\!3} \,\bigg] 
     = \frac{\operatorname{E}[X^3] - 3\mu\operatorname E[X^2] + 2 \mu^3}{\sigma^3}
     = \frac{\operatorname{E}[X^3] - 3\mu\sigma^2 - \mu^3}{\sigma^3}\ .

로 표현할 수 있다.

표본 왜도[편집]

크기가 n인 표본의 왜도는

g_1 = \frac{m_{3}}{m_{2} ^{3/2}} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3}{\left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2\right)^{3/2}}

로 정의한다. 여기서 mi는 i차 표본중심적률을 의미하며 \bar{x}는 표본평균을 의미한다.

모집단에서 표본을 추출하였을 때 표본왜도는 모집단의 왜도의 편의추정량이다. 이산확률변수에서는 표본왜도가 정의되지 않을 수도 있다.

피어슨의 비대칭 계수[편집]

피어슨의 비대칭 계수(Pearson's skewness coefficients)는 칼 피어슨이 비대칭도 측정을 위해 제안한 간단한 계산법으로,[2] 일반적으로 왜도와 비슷하게 분포가 좌우로 얼마나 대칭적인지를 나타내는 통계값이다.[3]

피어슨의 비대칭도는 다음과 같이 정의 된다.

피어슨의 첫 번째 비대칭 계수(Pearson's first skewness coefficient)

피어슨의 두 번째 비대칭 계수(Pearson's second skewness coefficient)

비대칭도 통계학

Cs =3*(평균 - 중앙값)/표준편차로 구할 수 있다. 중앙값, 최빈값, 평균이 일치하면 Cs=0으로 정규분포를 이룬다. Cs 값이 0보다 크면 왼쪽으로 치우치고 오른쪽으로 긴 꼬리를 가지는 분포를 이룬다. 이를 정적편포라 한다. 반대로 0보다 작으면 오른쪽으로 치우치고 왼쪽으로 긴 꼬리를 가지는 분포를 이룬다. 이를 부적편포라 한다.

같이 보기[편집]

참고[편집]

외부 연결[편집]