루프 양자중력

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색

루프 양자중력(Loop Quantum Gravity, LQG) 또는 고리 양자중력중력(Gravity)의 양자적 속성을 설명하기 위해 개발된 이론이다. 기존에 발견된 고전적인 시공간을 양자화된(플랑크 규모의 불연속적인 시공간) 1차원 고리(Loop)의 형태로 간주하며, 고리로 간주되는 시공간의 격자들은 기하학을 통해 기술한다. 고전적인 시공간 이론과 우주론에 부합하지 않기 때문에 새로운 이론을 제안하기도 한다.

루프 격자

개요[편집]

20세기 초반에 개발된 상대론(Relativity)과 양자역학(Quantum Mechanics)은 각각 거시 세계의 운동과 미시 세계의 운동을 기술하므로 서로 모순적이다. 그 점을 깨달은 물리학자 폴 디랙(Paul Dirac)은 1920대 후반까지 두 이론을 화해시키기 위한 방법을 물색했고, 마침내 디랙과 물리학자들은 슈뢰딩거 방정식특수 상대론적으로 수정하는 방법을 고안해내는 데에 성공했다. 그러나 양자역학은 일반 상대론과 호환되지 않았는데, 일반 상대론은 양자역학과 달리 운동이 아닌 시공간을 기술하는 이론이기 때문이다. 그래서 제안된 이론이 바로 루프 양자중력이다.

역사[편집]

상대성 이론과 양자역학만으로는 전 우주의 역사, 빅뱅이나 블랙홀과 같은 고밀도의 물질들을 제대로 기술할 수 없다. 이것을 설명하기 위해선 중력의 양자론적 해석이 필요하다. 그 점을 깨닫게 된 다수의 물리학자들은 중력의 양자화 과정을 고안해냈다. 대략 두 가지 방법이 있는데, 1967년에 브라이스 디윗이 도입한 정준 양자 중력(Canonical Quantization)을 나타내는 방정식인 휠러-디윗 방정식이 있고, 1980~1990년대에 새롭게 제안된 초끈 이론(M이론)이 있다. 여기서 일반적인 방식인 정준 양자 중력은 일반 상대성 이론해밀토니언을 통해 기술하여 정준 양자화한다. 정준 양자화된 파동함수는 휠러-디윗 방정식을 따르며, 형식적인 양자화 절차를 마치게 된다. 그러나 여러가지 문제점으로 인해 정준 양자화가 실패하게 되었다. 그러다가 1980년대에 이르러 리 스몰린(Lee Smolin)과 카를로 로벨리(Carlo Rovelli)가 루프 중력에 관한 생각을 정립해냈고, 곧이어 그 아이디어의 이름을 루프 양자중력(LQG)으로 명명했다. 새로운 변수들을 추가하여 정준 양자화의 약점을 보완한 것이다.

과정[편집]

스몰린은 LQG를 전개할 때 (해밀토니안) 격자 게이지 이론을 활용했다. 그러나 이 이론은 (고리를 이용한) 체계를 기술하기 위함이 아니라 근사(Approximation)하기 위하여 개발되었다. 양에 상관없이 곡선 전체에 미치는 누적 효과만을 고려한 것이다. 그 후 물리학자 안토니 트리아스(Antoni Trias)가 이론을 다듬었고, 체계를 기술하기 위하여 쓰였다. 스몰린도 같은 방식에 루프를 도입하여 체계를 기술하기 시작했다. 기본적으로 일반 상대론의 기본적 착상인 공변성을 고려하였고, 중력을 기술하는 고리는 바뀌지 않는다는 생각을 적용시켰다. 중력 외의 다른 힘을 기술하기 위해 모양을 바꾸기도 하는데, 이때 고리들은 서로 얽히거나 매듭지어진다.[1] 이 고리는 스핀 네트워크를 통해 기술된다.

문제점[편집]

초끈 이론과 마찬가지로 미소적인 규모인 플랑크 길이에서 이론을 전개하기 때문에 실증적인 검증이 불가능하다.


참고문헌[편집]

교양 서적[편집]

  • Bojowald, Martin (2010). 《Once Before Time》. Knopf.
  • Smolin, Lee (2002). 《Three Roads To Quantum Gravity》. Basic Books.

전공 서적[편집]

  • Gambini, Rodolfo, Jorge Pullin (2011). 《A First Course in Loop Quantum Gravity》. Oxford University Press.

주석[편집]

  1. Bojowald, Martin (2011). 〈양자중력:모든 것의 결합〉, 《빅뱅 이전》. 김영사