동형 사상

위키백과, 우리 모두의 백과사전.
(동형사상에서 넘어옴)
이동: 둘러보기, 검색

수학에서, 동형 사상(同型寫像, 문화어: 동형넘기기, 영어: isomorphism)은 서로 구조가 같은 두 대상 사이에, 모든 구조를 보존하는 사상이다. 두 대상 사이에 동형 사상이 존재하는 경우 서로 동형(同型, 영어: isomorphic)이라고 하며, 서로 동형인 두 대상은 구조가 같아 구조로서 구별할 수 없다.

정의[편집]

범주 \mathcal C에서, 동형 사상은 다음 조건을 만족시키는 사상 f\colon X\to Y이다.

  • 역사상이 존재한다. 즉, f\circ g=\operatorname{id}_Y, g\circ f=\operatorname{id}_X인 사상 g\colon Y\to X가 존재한다.

두 대상 사이에 동형 사상이 존재하면, 서로 동형이라고 한다. 시작과 끝이 같은 동형 사상을 자기 동형 사상이라고 한다.

모든 전사 단사 사상이 동형 사상을 이루는 범주를 균형 범주(均衡範疇, 영어: balanced category)라고 한다.

성질[편집]

서로 동형인 것은 동치 관계를 이룬다. 특히, 항등 함수가 동형 사상이므로, 모든 대상은 스스로에게 동형이다.

임의의 범주의 임의의 사상에 대하여, 다음 조건들이 서로 동치이다.

일반적으로, 단사 사상이자 전사 사상이지만 동형 사상이 아닌 사상들이 존재할 수 있다.

구체적 범주 \mathcal C\to\operatorname{Set}에서, 자유 함자(망각 함자 \mathcal C\to\operatorname{Set}의 왼쪽 수반 함자 \operatorname{Set}\to\mathcal C)가 존재한다면, \mathcal C의 사상에 대하여 다음 두 조건이 서로 동치이다.

특히, 대수 구조 다양체의 범주에서는 자유 함자가 항상 존재하므로, 동형 사상은 전단사 함수준동형이다.

모든 아벨 범주와 모든 토포스는 균형 범주이다.

[편집]

여러 범주에서, 동형 사상들은 특별한 이름이 붙는다.

준군에서는 정의에 따라 모든 사상이 동형 사상이다. 특히, 을 하나의 대상만을 갖는 범주로 간주하였을 때, 모든 사상은 동형 사상이다.

모노이드를 하나의 대상만을 갖는 범주로 간주하였을 때, 동형 사상들은 가역원들이다.

균형 범주의 예[편집]

위상 공간의 범주는 균형 범주가 아니다. 이 범주에서, 전사 단사 사상은 전단사 함수연속 함수인데, 이는 위상 동형 사상보다 더 약한 조건이다. 그러나 콤팩트 하우스도르프 공간의 범주는 균형 범주이다.

의 범주는 균형 범주이다.

의 범주는 균형 범주가 아니다. 예를 들어, 포함 사상 \mathbb Z\hookrightarrow\mathbb Q전사 사상이며 단사 사상이지만, 동형 사상이 아니다.

참고 문헌[편집]

바깥 고리[편집]

같이 보기[편집]